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A formulation of the problem of the panel flutter of a shell with an arbitrary plan view which is 

arbitrarily orientated with respect to the flow velocity vector in presented under the assumption that 

the excess pressure, as viewed from the direction of the flow of gas onto the hollow shell around which 

the flow occurs, can be determined using the linearized (piston) theory of a supporting surface. The 

general formulation is made specific using certain examples. 

With the rare exception of [5], the objects of investigations on panel flutter [l-5] have been a 
rectangular plate, a cylindrical panel or a closed cylindrical shell. In these cases, a quite 
particular formulation of the problem was used which was subject to the condition that the 
flow velocity vector is parallel to one of the sides of the plate or to the generatrix of the cylin- 
drical shell or panel. The large variety of problems considered was due to the diversity of the 
boundary conditions and, also, the methods of investigation: rigorous analytical, approximate 
and numerical methods. The flutter of visco-elastic rectangular plates has been investigated 
with the same constraints in the formulation in [6-81. However, the panelling elements of 
aircraft are either hollow shells with various plan view outlines or circular plates, for example, 
but not rectangular plates. On the other hand, in many important practical cases, the flow 
velocity vector is quite arbitrarily orientated with respect to the sides of the plate or panel. The 
solution of this kind of problem is possible using a general formulation of the problem of panel 
flutter which has not been given up to now. This deficiency is made good in this paper. 

1. Consider a shell in a fixed system of Cartesian coordinates (x, y, z). As a geometric surface, 
the shell (its median surface) is parametrized by the curvilinear coordinates x1, x2 and its 
position in space is determined by the radius vector 

r=Mx’,x2X y(x’,x2), 2(x*,x2)} 

The first and second quadratic forms are thereby determined. 

z, = g,dXidxk, I2 =b&‘dxk, i,k=l,2 

The coefficients of the latter are expressed in the well-known manner [9] in terms of the 
derivative of r with respect to xk (we shall subsequently adopt the notation r, = &l&‘).The 
vector of the unit normal to the initial (undeformed) surface of the shell is defined in the 
following manner 
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Let us assume that there is a flow around the external surface of the shell, which is defined 
by the normal in accordance with (l.l), by a supersonic gas stream with a velocity vector 
V = {u,, u,,, u,). Here, Iv, / I V II * E, where E is a parameter, which occurs in the estimate of the 
accuracy when determining the pressure using the law of plane sections [lo, 111. 

Henceforth we shall consider the flow around a hollow shell so that the condition 
I1 - cosy 1-e 1 is satisfied, where y is the angle made by the normal to the surface with the z, 
axis. 

This enables one to use the linearized (piston) theory to determine the pressure on an 
element of the surface, according to which [ll] 

(1.2) 

Here p,, and C, are the pressure and the velocity of sound in the unperturbed tlow and K is the 
polytropy index. If the pressure is determined on an element of the panelling which is located 
behind a shock wave then, generally speaking, it is necessary, instead of p,,, C,, to take the 
parameters p,, Cl, which are defined as averages over the volume enclosed by a right cylinder, 
the end of which is the shell and the shock wave front. 

If the shell is rigid (undeformable) then u = np,V = (V, n) and (1.2) takes the form 

& = fW, n) (1.3) 

In carrying out specific calculations, it is convenient to parametrize the shell using the 
Cartesian coordinates X’ =x, x2 = y and to describe the surface by means of an explicit 
expression z = f(x, y). Then 

r=Ix,y,z=f(~.y)~, q =1LO,f,l 

r2 =(O,l,f,j, a’={-f,,-f,,l}, n=n”/InoI 

We substitute this into (1.3) and take account of the fact that, in the case of a hollow shell, 
the squares of the derivatives f,, f,, may be neglected compared with unity. Finally, we obtain 

Comparatively simple formulae for calculating the integral characteristics can be obtained in 
Cartesian coordinates. For example, in the case of the z-axis projection of the principal vector 
of the aerodynamic interaction forces, we find 

p = jj L\p(x’ , x2 )cos $0 = jJ 4-a y)dxdy 
0 S 

Here, o is the supporting surface and S is its projection on the X, y-plane. 

2 Let us now assume that the shell is deformed. In order to calculate the excess pressure in 
this case, it is necessary to determine the position of the normal to the deformed surface. We 
will use the notation U = ur, + ur, + wn, where U is the displacement vector of the points of the 
median surface. The deformed surface will then be defined by the radius-vector R = I + U. 
Using the notation R, = aRIaxk (k = 1, 2), for the new position of the normal we shall have 

n’ = [RI x R21/l[R1 x R211 (2.1) 

Let us calculate the derivatives R,. Using the rules for the differentiation of vectors r, and 
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of a normal n [9], we obtain as a result 

l& = A,,q + Ak2r2 + Bkn 

Ak, =W,‘.Ck,, Ak2 =h~Iax~+C,, 

B, =ilwlaxk +bk,u+bk2u, C, =G;,u+G;,u+b;w 

k,i=f,2 

(2.2) 

Were, bkl = b,g’ , G,k are second-order Cristoffel symbois and g” are the contravariant 
component of the metric tensor 

8 l&822, 
g 

gu&, gl2=g21 

g 
=-7% g=g11ga -g:2. 

Next, using (2.21, we calculate @, xR,] and use the formulae 

Is x r21= J& &iEq x 4 = gk2rl - 8klr2, IN+ xR,ll=[(R,,R,)(Rz,R,)-(R~rR~)21H. 

All of the resulting expressions are introduced into (2.2) and (2.1) and the final result is simpli- 
fied, On the basis of the h~~eses of the linear theory of shells, we obtain 

n’=n-A,q -4r2, Ak =gk”& egk2B,, R=1,2 (2.3) 

Note that an expansion of the displacement vector U over the basis set unit vectors has to be 
introduced into the computational formulae. Since r, = I r* i e, = ~~~~e*, we then obtain U = 
~~~~~~~ + ~~~~~~ + wn and, here, u* = udfg,,) and u* = uJ(g& will be the physical cumpon- 
ents of the displacement vector. Having expressed 11 and u using this, we write the expressions 
for B, 

We will now present the computational formulae. For a hollow shell If, Ml, I fy I+1 and, 
hence, gkk zgkk=l, lg121slg,191, Iglal which implies that A,+&, IA,f,+A&l~l. The 
coefficients 4% = f,lqg, b, = f,ldg, &, = f,/Jg and these are quantities of the order of the 
principal curvatures and torsions and therefore B k %&V/Z&*. Taking account of these estimates 
frum (2.3), we obtain 

(2.4) 

The complete expression for u(t) is defined as the sum: u(t)= awBr+(V, n’) and, 
su~~tu~g this together with (2.4) into (1.3), we obtain an expression for the excess pressure 

The equations of tire linear theory of hollow shells have the form (see [S], for example) 



548 A. A. Il’yushin and I. A. Kiiko 

DA2w-hL(@)-q=O, A2@+EL(w)=0, L(f)=k,g+k a2f 
cp i 7.t)) 

Here A is the Laplace operator, 0 is a function of the stresses, k, and k, arc the principal 
curvatures of the shell, /z is its thickness and E is Young’s modulus of the material. The 
transverse load (I is made up of the inertial forces and the excess pressure: cl := ---AJI-pM’ct~/ b’. 
On substituting this-into (2.6), we obtain a system on the basis of which the oscillations and 
dynamical stability of a hollow shell can be investigated. System (2.6) is closed by the addition 
of the initial and boundary conditions to it. 

Let us separate out the “static” solution w,(x, y), @(.Y, y : cD,(x, y) in (2.6) 

DA22w0 - L(Q,) -P(u,grad wo) = q. 

A2~o+EL(wo)=-0, v=Iu~,u~I, q. =P[(u,gradf)+uzl 

which satisfies the boundary conditions of the problem. Here. we assume that the shell does 
not lose stability under the action of a static load qO. For the “dynamic” deflection W(x. y. t) 
and the stress function a,(~. y. t), we obtain after this a homogeneous system with the same 
boundary conditions and specified initial conditions 

A2W DA2W-hL(0,)+ph-+B~-P(u.gr~w)=o at2 
A2@, + EL(W) = 0 (2.7) 

On account of the problem of stability, we shall investigate the oscillations of the shell in the 
class of functions 

W = Cp(X, y)P’, @I = F(x, y) eof 

On substituting these expressions into system (2.7), we obtain 

A2F+EL(cp)=0, h=-pho2 --PO (2.9 

Together with the boundary conditions, system (2.8) constitutes of problem from which the 
eigenvalues h and the eigenfunctions cp, F must be found. 

Let h, = ~1, +p,i be the first eigenvalue. Oscillations with frequencies with a negative real part 
will be stable. On the basis of the equality phw’ + @I + a, +&i = 0, the inequality a$’ > phpf 
corresponds to the condition Re w < 0. Since a, and p, depend on II,, u,.. the condition which 
has been written out defines a curve in the plane of the components of the velocity vector u,. 
u, which separates the domains of stable and unstable oscillations. 

Let us make system (2.8) more specific by considering several examples. A rectangular plutc. In t111s 

case k, = k, = 0, F = 0 and it follows from the first equation of (2.8) that 

DA22cp+(ugradcp)-%‘=0 (2.9) 

Solutions of certain problems based on this equation were obtained in [ 121 and revealed new 

mechanical effects. 

A circular plate. If the boundary conditions are the same over the whole contour, it is natural to put 

v, = 0 and to write (2.9) in polar coordinates 
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(2.10) 

A cylindrical panel which is rectangular in the plan view. The x-axis is directed along the generatrix. 

Then, k, = 0, k, = R-’ and, from (2.8), we have 

A spherical panel which is rectangular in the plan view. Since k, = k, = RF’, it follows from (2.8) that 

Circular spherical panel. If the boundary conditions are the same over the entire contour, we then put 
v, = 0 and, in polar coordinates, we obtain 

v,-IQ=O 

A2F+$Aq=0 
(2.11) 

In formulae (2.10) and (2.11) the Laplace operator has to be written in polar coordinates. 
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